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CHAPTER 1
INTRODUCTION

The purpose of this thesis is to report the results of an
empirical analysis of the frequency of overshoots above an
arbitrary level in a stationary gaussian stochastic process.
The problem is of interest to the Terrestrial Envir._nment
Branch, Aerospace Environment Division, Aero-Astrodynamics
Laboratory, George C. Marshall Space Flight Center, Alabama,
and the financial support for the project was under NASA
contract no. NAS8-29286. The results obtained in this analysis
are applicable in the prediction of extreme properties of
processes such as wind speed, ambient temperature and sea
state. The methodology may also be used in other fields,
i.e,, electrical engineering and aercspace vehicle responses
to forcing functions having known or assumed exponential
autocorrelation functions.

The remainder of this chapter presents a general dis-
cussion of the scope of the work, and the organization of this

analysis.
1.1 Statement of the Problem

The problem dealt with herein concerns the frequency dis-
tribution of overshoots in a stationary gaussian stochastic
process with an exponential autocorrelation function. Briefly,
a staticnasy gaussian process may be described as a stochastic

process which, at any point in time, has a gaussian distribu-
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tion. To be stationary the process mnust have a mean inde-
pendent of time and an autocorrelation function dependent only
on the distance between successive time points.

The problem has been of general theoretical interest for
some time while little has been done to obtain numerical re-
sults. Previous work in this general area is excellently
summarized in two recent texts, Cramer' and Leadbetter (1967)
and Kuznetsov (1965), and both contain extensive bibliogra-
phies. The general density function for the number of
crossings in a (0,1) time interval was given by Kuznetsov
and Stratonevich (1956). For a stationary gaussian process
with R(7) = exp(~Bt?) Tikhonev (1956) approximated the
probability of zero crossings in (0,t) by expanding the
proof given by Kuznetsov and Stratonevich (1956) and neglect-
ing terms in the series of order greater than 2. Other
authors have various expressions for this density rfunction
and have investigated its asymptotic behavior. A general
result states that as the level increases the number of over-
shoots in (0,t) is Poisson distributed. A more extensive
summary of previous work in this area is presented in Appen-
dix II. 7o the author's knowledge this is the first investi-

gation conducted by extensive simulation of such a process.
1.2 Organization of the Analysis

Chapter 2 is a discussion of the simulation model and
assumptions concerning the model. Using the methods
developed in Chapter 2, several simulations were run on an

IBM=-1130 computer. The results and analysis of the simula-
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tions are presented in Chapter 3 along with the resultant
distribution equations.

The modus operandi for NASA to apply this solution to
their specific problems concerning atmospheric variables is
presented in the concluding chapter of this analysis.
Appendix I contains a computer program to utilize the

algorithm obtained in this investigation.
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CHAPTER 2

Model and Simulation

The first step in this development of a solution to the

overshoot problem was to define a mathematical model of a

stationary gaussian stochastic process with an exponential

autocorrelation function. 1In developing the model, the

following conditions were assumed:

1)

2)

3)

4)

5)

The sample process had a multivariate normal
distribution.
The process was strictly stationary, i.e., the

autocorrelation function R(ti,tj) = R{T)

where T = |t -t
J 1

The expected value of a random variable X at

time t was 0, i.e., E(X(t)) = 0 where E de-

notes the expectation operator.

The covariance matrix, denoted I, was symmetri-

cal and positive definite.

The autocorrelation function, denoted R{(T),

was exponential in nature, i.e., R(1) = EXP(-B|t]|).

The notation X(t) will denote a stochastic process satis-

fying the above conditions.

The process was considered over a time interval (0,99]

and a sample realization consisted of 100 equally spaced

sample points in the interval.

in the analysis whereas for a specific application the range

of interest would be some [0,T] interval.

- W

This permitted some generality

In this case X(t)
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would be sampled at to,tl,...,t99 where ti = (IBE)T’

with a corresponding modification of the autocorrelation
parameter fB. The method of simulation was given by Odell
(1971) and a summary of that technique is presented in the
following discussion.

Let X = (X(to), X(tl), cess X(t9 ))” (° denotes matrix

9
transposition), then the covariance matrix is given by

L = (oij) = E(X*X”) so that for 0 < i, j < 99

Uij = E(X(ti)X(tj)) = R(tirtj) = R(T) where T = Iti_tj

Thus it follows that I is formed by evaluating R(t) for
0 <T <99 giving
R(0) R(1) R(2) cea R(99)
R(1) R(0) R(1) «e. RI(98)
R(2) R(1) R(0) .o R(97) }
z = L] L] L] L]

/

R(99) R(98) R(0) /

By assumption X satisfies a multivariate normal distribu-
tion with mean u = 0 and covariance matrix I, denoted
X ~ N(u,Z). The following result, given by Odell (1971,
pg. 37), provides the modus operandi of generating realiza-

tion of X(t).

Theorem: If the 100 x 1 vector Y ~ N(u,I), and
Yy is a fixed 100 x 1 vector, then
V=AY +y is distributed N(Ay + y, A L A%).
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We generated a vector Y ~ N(0,I), I denoting the identity
matrix, and obtained a factorization AA“ of I, therefore,
by the above theorem V = AY was distributed N(0,I). The
resultant vector V constituted a realization of X(t).
The generation of the vector (yo,yl,...,ygg)‘ = Y ~ N(0,I)
was accomplished by generating a sequence of 100 independent
standard normal variates. The Crout method was used to
factor I into AA“.

The technique of generating Y was given by Hamming
(1962). He notes that an approximation to normally distri-
buted random numbers can be produced from a sequence of

uniformly distributed random numbers by the formula

K K
L xg =32

Yy = k=1 where X, is a uniformly distributed
K/12

random number in (0,1), and K is the number of values of
Xy used., According to the Central Limit Theorem, as K
tends to infinity the value of Yy approaches a standard
normal distribution. To implement this procedure on a
computer we fixed the value cf K at 12, The formula for
Yy could then be expressed as y, = kiixk - 6. This con-
struction of yi for 0 <i <99 produced a seqguence
yo,yl,...,y99 of standard normal variates with mean 0 and
unit variance. This sequence is the vector Y ~N(0,I).

We generated 250 realizations Vi i=1,2,...,250, .
for each of the autocorrelation functions simulated. This

required 250 random vectors Y¥,, i =1,2,...,250 which in
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turn, required a sequence of 250 * 100 = 25,000 standard
normal variates, or 250 * (100 * 12) = 300,000 uniformly
distributed random numbers. The algorithm used to generate

uniformly distributed random variates was:

r, = normalized (S,) where § = Ar _,

and the normalization is a reduction to (0,1).

This algorithm is the well established power residual method
of generating pseudo-random sequences. The period of the
sequence generated in this fashior is a function of the in-
iteger capacity of the computer being used for the generation.
In the case of the IBM-1130, the largest integer, and hence
the period of the sequence, was 32,767 which falls far short
of the necessary 300,000.

Since the period of one number generator is too short
to produce 250 realizations, we used a separate randon
number generator Gj' j=0,1, ..., 99, for each of the 100

elements of Vv ) 1 <1 <250. Thus

n = (yi'ol yi,l' ee ey yi,99
the generator Gj' 0 < 3 < 99, produced the sequence

yl,j' y2,j' coep y250,j of independent standard normal variates.

In this fashion, each generator G was required to produce

250 » 12 = 3,000 uniformly distriiuted numbere, which is
easily possible on the computer used in this analysis.

To transform each vector ¥, into a realization vy
of the process X(t) via the linear transformation !i =AY,

it was necessary to factor the variance covariance matrix f.




As noted previously, I is a symmetrical, positive definite
matrix. A well known theorem in matrix theory states that
such a matrix can he factored into the product of a lower
triangular matrix and its transpose. This factorization,

I = AN , where A 1is lower trianqular, was accomplished
using the Crout factorization technique as presented by Odell
(1971, pg. 38). The method is summarized in the following
discussion.

The elements of A = (aij) will be computed in the

foliowing seauence: a11’azl'a31""’aloo'l'aZZ'a32""'alOO'

27°°+139979972100’99’%100’100° Note that A is lower tri-

angular so aij = 0 whenever Jj > i. Using this fact we have
3
o,, = I (2.2)

15 T pop ikT3k
from which the following algorithms were derived. For

i=3j=1 we have 01 = ail so it follows that

1/2
a,, = (oll) . (2.3)

For 1 > j =1 we have oij = a;,a,, 8O the remaining ele-~

ments of the first column of A are given by

ail = oil/all’ (2.4)
After j-1 columns of A have been generated we have
o] ; a j;laz +* 2 £ th ini dai 1l

- 7 a, = a so for e remainin agona
30T oMk T 0y %9k T %y g o
elements we have
=1 2 31,2
a = O - X L] (2.5)
33 ( 33 k.lajk)
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For the remaining elements we have o0.,. = I a, a, =
1] k=1 1k Jjk
i-1
I a,

.a,.. + a ,a,., 80 we can conclude
k=1 ik Jk ij 33

j=-1
= . - . . fo R
aij (013 kilalkajk)/ajj r (2.6)

i=3j+1, 3j+2, ..., 100,

The autocorrelation function R(t) = exp(-8|t|) determines
the degree of association between successive values of X(t).
The process X(t) was simulated for a range of B8 values
yielding processes where the correlation was above .98
throughout the process, to processes where X(t) values
could be considered indeperdent after two time intervals.
The minimum £ value used was .002 which yielded R(99) =
.9802, and the maximum 8 value was 5.0 which yielded
R(2) = .00004539. The primary B values utilized were .002,
.005, .0075, .01, .025, .05, .075, .1, .25, .5, .75, 1.0, 1.5,
2.0, 3.0, and 5.0, We did, however simulate processes which
were outside our primary range of interest, namely 7.5 and
10.0. At each of these B8 values 250 realizations were
generated. The selection of 250 as the number of realiza-
tions for each 8 value was based on available computer
storage capabilities but, from a statistical viewpoint, was
deemed adequate for subsequent estimation and inference

activities.




CHAPTER 3
Simulation Results and Analysis

Once the "data sets" had been generated the basic
problem of counting overshoots came into focus. Letting A
denote some arbitrary level, we counted the number of over-
shoots above values A = .5, .75, 1.0. 1,25, 1.5, 1.75, and
2.0. Since each realization has mean 0 and unit variance,
this was equivalent to counting the number of overshoots over
.5 standard deviations above the mean, .75 standard devia-
tions above the mean, etc. In future applications the over-
shoots above a value of, say A = ,75, would be equivalent to
overshoots abcve a value of .750 + u, where the process has
mean u and variance o2,

The value of 2.0 was selected as the upper limit of the
major range of interest since, in the completely independent
case, only 2.27% of the values would be above 2.0 and in the
more correlated cases, the number of points, and hence the
number of overshoots, would likely decrease. The value of .5
was selected as the lower limit of the range of A values.
In the completely independent case 30.85% of the values lie
above .5, but the more memory the system has the longer the
duration of each overshoot, and hence the fewer the number of
overshoots. We did, however, count overshocts above higher
levels for the purpose of determining the integrity of the
estimation model outside the primary range of interest.

Specifically, overshoots were counted for A levels of 2,25,

10




[ Tl L
.

2,5, 2,75, 3.0, 3.5 and 4.0 for B8 values of .005, .02, .05,

.1, .5, 1.5 and 3.0.

To count the number of overshoots above level A, we
counted the number of times V(ti_l) <A while V(ti) > A
where 0 <i < 99 and V(to) =0,

After the number of overshoots for a particular level A
and autocorrelation parameter 8 was determined, the sample
mean, X, and variance, S?, were computed in the traditional
fashion. This provided the data to complete the table of

means for A and B, Table 1, and the tahle of variances

for A and £, Table 2,

11
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As noted in the introductory chapter, the Poisson dis-
tribution is the limiting distribution as the crossing level
becomes large and it seemed reasonable to first try the
Poisson as a model for lower crossing levels. An estimation
model for the multivariate Poisson (multivariate in the sense
that the parameter ) was assumed to be a function of A and
R) was inmplerented and tried for various functions of A and
B. The results were discouraging. We first attributed the
failure to our inability to find the proper function of
A and B, but later it was determined that the Poisson model
was, in general, inadecuate.

The next and most fruitful step was the careful examina-
tion of the means and variances for various levels of A and
B. This led immediately to the following conclusions:

1) There was a strong empirical relationship between
the sample means and A and B8, and to a lesser
extent, between the sample variances and A and Bg.

2) The binomial and negative binomial distributions,
with parameters calculated from the sample means
and variances, were more appropriate for the levels
of 2 we investigated.

For values of A <1.5 and R < 1.0 the means exceeded the
variances with the &iscrepancy increasing as A and g de-
creased. As A and B increased ahove 1.5 and 1.0 respec-
tivelv the values became approximately equal or the variances
exceeded the mean. Once this trend was noticed, the reasons

for observations 1 and 2 above became clear. If we assume

‘one of three models, binomial, Poisson, or negative binomial,

14
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is appropriate, then an accepted selection criterion is the
relationship between the mean and variance. These observa-
tions led us to seek those functional relationships that
could best predict a process mean and variance.

In the search for the relationship between A, B and
the mean yu, we first graphed the sample mear X as a
function of A for each g8. This graph, Figure 1, strength-
ened the conclusion that such a relationship existed but, due
to our inability to find an appropriate approximating
function of that relationship, this method of viewing the
data was abandoned. However, we did note from this plot that
the relationship behaved in what appeared to be an exponen-
tial fashion.

Suspecting the exponential characteristic, the next step
was to graph 1n(X) as a function of A for each g on semi
log graph paper. This plot, Figure 2, was not a straight
line as we had anticipated, but rather it seemed parabolic
with the parabolas opening about the 1n(X) axis. We selected

the general parabolic model
1n(X) = A+ 2 (3.1)
n(X) = XO(B) + Al(B) AZ(B)A .

to try as an approximating relationship. The least squares
technique summarized below was used to estimate AO(B),

Al(B), and AZ(B) for each 8. Using these results, equation
(3.1) was then rewritten to produce the estimate of the mean

as

EST(u) = axp(A,(8) + A (B)A + )\Z(B)Az). (3.2)

16
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For each B the estimate of u was a good approximation of
X so we concluded that if the dependency of the A's on B8
could be found, then (3.2) would provide a good estimate of
the mean.

The least sauares technicue was given by Jorgenson

(1961) and was used to estimate A = (Ao,xl,...,xk) for the

general model ni = AOtO + Altl + ... + Aktk for i=1l,...,m

(m being the number of observations). Let T = (Tij) where
1

Tiy = t; for j=l,...,k, and i=l,...,m. Then A = (T°T) "T°n
where n = (nl,nz,...,nm)’ and A is a k x 1 vector of the
estimates,

Using the results of the least squares method, the first
step toward determining the dependence of Ai on B was to
plot ln(B)' vs. 1, on semi-log graph paper for each of

A ’Al' and Az. For all three coefficients three dist;nct

0
trends were observed. For B8 < .0l the relationship was

linear, for .01 < 8 < 1.5 the relationship appeared quadra-
tic, and for B8 > 1.5 the relationship was again linear and

essentially horizontal. Accordingly, the following models

were fit using the method of least squares:

B < .01 In(B) = a, + alki, i=1,2,3
1.5 1n( = + + 2 i=1,2,3
g > 1.5 B = a, + alxi, i=1,2,3 (3.3)

The results of the least squares estimates of the ai‘s are

presented in Table 3.

16




TABLE 3

LEAST SQUARES ESTIMATES OF COEFFICIENTS OF (3.3)

ao al a2

Ao < .01 -6.0717 1.1105 -

lo .01 < < 1.5 -6.423 1.57686 .21851
XO > 1.5 -236.0714 71.4286 -

Al < .01 -6.65546 -3.23315 -

Al .01 < < 1.5 -1.0582 10.31154 10.23657
AZ < .01 -7.81708 -10.2928 -

X2 .01 < < 1.5 -3.9142 3.382882 16.3656
AZ > 1.5 23.5 50.0 -

17




Using the results given in Table 3 we then solved (3.3) for

AO' A,, and Az vielding estimation ecuations for xo, Al'

1

Az as

g < .01 Ai = (In{B) = ao)/a1 i=1,2,3

0 1.5 = + [ 2 4 ~1ln( 172 =
L0 < B <1, xi = (-a; a; - az(a0 n(g))l )/za2 i=1,2
2 1/2 ]
Ay = (-al - [al -4a2(a0-ln(8))] )/2a2 i=3
B > 1.5 Ai = (S-ao)/a1 i=1,2,3 (3.4)

We then estimated all coefficients and used them in the mean
prediction equation (3.2). The estimated means are given in
Figure 1 along with the sample means. From this graph it is
clear that, in almost all cases, the deviations are very
slight and, as will be subseaquently noted, the means estima-
tion was deemed adecuate.
In the search for the functional relationship between
A, B and the variance, 02, we graphed the sample variance,
s?, as a function of 1ln(B) for each value of A, On careful
examination of that graph, Figure 3, the ensuing observations
were made;
1) The sample variances were much more erratic
than the sample means.
2) For levels of A bhelow 1.0, the graphs of the
relationships of the variances and 8 are, for

all practical purposes, coincident (for this

18




reason onlyv A = .75 was graphed as a repre-
sentation of all A < 1.0).
3) The graphs are parabolic in appearance, opening
ahout the 1ln(g) axis.
These observations led to the following model to estimate the

relationship:

2
In(8) = Ag(A) + A (A)S? + A, () (s2) , where
§2 is the sample variance. (3.7)
We ran least squares fits for each A and found that

the model was acceptable provided the dependency of AO' Al'

and Az on A could be determined. Toward that end, we

graphed each coefficient of (3.7) as a function of A. The

plots of AO and Al appeared linear. The graph of xz
at first appeared to be quadratic, but was later found to be
better approximated by a cubic equation. Therefore the

following models for ., Ay and A, were fitted using least

0
squares techniques:

=a_ + a, A

Ao 0 1

Al = ao + al A

2 3
= + + ] .
Az ao + al A azA a3A (3.8)

The results of the least squares fits provided the following

estimation equations for xo, Ayr and AZ:

Ao = ~7,013 + .3871A

A, = ,2192 -~ 1759A

. 1
' ' 12 = -6,1371 + 14.813A - 11.633A2 + 3.05A3. (3.9)

19
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Tests of (3.9) vielded good anproximations to the coefficients
for each level of A.

The original variance model (3.7) was then re-written as

0 = (xo - 1In(B)) + A,S% + Az(sz)2 (3.10)

1
and solving (3.10) for the estimated variance o¢2%, we have

/

2 _ 2 _ - 1/2
EST. 0?2 = { Al + [Al 4A2(A0 In(8))] )/2A2. (3.11)

1 Az, we

then estimated the variances from (3.11). As noted previously,

Using the coefficient model to estimate AO, A

the sample variances are more erratic than the sample means
and the estimated variances were not, in general, as accurate
as the estimates of the means. The estimated variances are

shown in Figure 3 along with the sample variances.

20
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FIGURE 2

SAMPLE MEAN VS. CROSSING LEVELS
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To check the accuracy of our results, we ran estimations
of overshoots for the values of A and B that were used in
the estimation process. The estimated mean was calculated
from equation (3.2) while the estimate of the variance was
given by (3.11). To determine which distribution was appro-

priate, we formed the ratio

_ estimate of mean

= estimate of variance® (3.12)

If r < .95 then the variance clearly exceeded the mean so

we used the negative binomial distribution

I (k+i
p{X=i} = T%ETI% p¥ql; 0<p<l, ptg=l, k>0, i=0,1,2....  (3.13)

If .95 < r < 1,05 then the mean and variance were approxi-

mately egual so we used the Poisson distribution

i -2

A
P{X=i} = —;%—-; A>0, 1=0,1,2,+¢-. (3.14)

If r > 1.05 then the mean clearly exceeded the varianze so

we used the binomial distribution

P{X'i} b (:)piqn-i’ 0_<_P_<_1p p+q-1, 1-0,1,""3. (3.15)

The test used to check the goodness of fit for the pre-
dicted models was the Kolmogorov goodness of fit test.
Briefly, the test compares the theoretical and sample distri-
bution functions and one concludes there is no significant
difference between these distributions if the maximum absolute
difference between them is less than a predetermined quantity

based on the significance level and sample sise.
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The test is desigred to compare ccatinuous distribution
functions and, as such, is not direc:'. .pplicable to dis-
crete ‘es. When it is applied the s:i..iificance level used
is conservative to an indeterminate 4..;.2e. For our purposes
this is quite acceptable. 1In geaer .: . conservative test
conductad at a laevel of signifi.cxre is, in reality, being
conducted at somae «” < ¢ lev.. ;¢! significance. Thus in
Table 4 the o levels are give: a8 a < .05 or a < .01,
This means that a conclusion that we have a good fit using
the a = .05 significance lavel really says the two distri-
bution functions are in agreement at some a“ value smaller
than .05. For the cases in Table 4 where the prelicted
models fitted poorly we can only state that the model was
rejected at some a level less than .0l1. The justification
for using the Kolmogorov test for these data is given in
Noether (1967, pp. 17-18).

The sampling distribution for the Kolmogorov test is
well known and for sample sizes above 35 the maximum absoluce
difference batween the theoretical and observed distribution
functions must not exce2d the value du//ﬁ where *‘05 = 1.36
and 6.01 = 1.,63. These results are available in Siegel
(1956, pg. 251). Conseguently usirg n = 250 the critical
values are 21.50 and 25.77 respectively.

A brief glance at Table 4 shows excellent results through
most of the £ and A values with no rejections in the
.1 < 8 < 1.0 range which will be the primary 8 values used
in wind speed calculations. It is unlikely that many appli-

cations will require those £ ‘alues giving poor results,




namely .NN2 and 2.0. The .002 data set is the "end point" in
our predictive process and 2.0 is the data set just above the
"transitional" value where the means behavior changed
drestically (previously discussed in this chapter).

Appendix III presents a spectrum of data sets in the
computer format used to evaluate the goodness of fit. Al
pertinent information, i.e., A and B values, ohserved and
predicted means and variances, model utilized, cumulative
distribution functions and predicted probahilities, are

presented.
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TABLE 4

Condensed Summary of Fitted Models

Using Predictive Equations

*Good Fit at a

<

.01

**Good Fit at a < .05
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Bad Fit due to mean overesti-
mation

Bad Fit due to mean under-
estimation

Analogous to definitions on
u above
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The fact that the binomial and negative binomial models
fitted the data was, upon reflection, not surprising for the
following reasons:

1) A well known statistical fact given by Johnson

and Kotz (1969, pg. 43) states that, if one of

the models is applicable, the criterion for
selection depends on the relationship between

the mean and variance, i.e., if u > 0? select the
binomial, if u is approximatelv equal g2

select the Poisson model, if u < 0? select the
negative binomial.

2) As pointed out by Johnson and Kotz (1969, pg. 135)

for B8 wvalues that are quite low the negative
biﬂomial is the appropriate model since, with a
small B8 value, the successive time points and,
therefore, successive overshoots are dependent.

In applications where the Poisson model seems
appropriate but successive events are not indepen-
dent the negative binomial model is an excellent
alternative,

3) For larger B values the binomial model is re-

quired since successive time points and over-
shoots are, for all practical purposes, independent.

The criterion for a successful model was adequate fits
on the majority of the data sets. As pointed out in Table 4,
the experimental results for means and variances were, in

general, approximated adeauately by the prediction model.
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Therefore we concluded that the model presented in this

analysis is a good predictor of overshoots in a stationary

function.

| gaussian stochastic process with an exponential autocorrelation

R

© et
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CHAPTER 4
Applications

The purpose of this chapter is to explain how the
analyses discussed previously could be applied to problems
of a gereral nature where the assumption of a stationary
Gaussian process with an exponential autocorrelation function
is plausible.

As noted in chapter 3 the A 1levels of .5, .75, 1.0,
1.25, 1.5, 1.75 and 2.0 were used in obtaining the basic
prediction models. Figure 1 gives the predicted means for
levels above 2.0 for representation values of 8. It is
apparent that the predictive equations are adequate for A
levels above 2.0.

While the study involved counting overshoots above
specified A levels it is valid to assume the model is
applicable to predicting the number of "undershoots" below
negative A levels - for no reason other than the symmetry
of the normal distribution.

The estimating equations for the mear and variance
were derived hased on realizations of 100 points. Some
applications, based on time periods yielding appreciably
ditferent numbers of points in a realization, require a modi-
fication in these estimating equations. In the computer pro-
gram this is cone directly using the standard formulas.

Letting M be the number of time points desired we have

30



New EST(u) = EsT(u)«M/100
and

New EST(c?) = EST(GZ)*(M/IOO)Z

with the model being selected based on the new estimated
mean and variance. It should be noted that these new
estimates are exactly correct only for the independent case
(high A and/or B8 values). When the correlations go to
zero rapidly (B values > 1 and/or moderate A value=)
the new estimates will be higher by an unimportant, and
likely indeterminable, amount. For small B8 values the new
estimates could be inflated if A is also low. As our
primary range of interest has been in 8 values > .1l and
A values distant from the mean the modification in the
mean and variance will be satisfactory.

The compﬁter program given in Appendix I has been de~-
veloped to support applications of this study. We will, in
the ensuing discussions, relate applications that can be
performed using this program.

To utilize this program the following data must be pro-
vided:

1) the average, u, of the process,

2) the standard deviation, o, of the process,

3) the coefficient, B, of the autocorrelation function

R(t) = exp(=-8|t]),
4) the number of time points and

5) the crossing level L and maximum frequency N.
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Assume that the probability distribution of the number of
overshoots above some level L > py 1is desired. The pro-
gram will use L, u, and o to calculate the A level,
i.e., A = (L - y)/o, which will be used in the prediction.
It is important to note that the model expects A to be
positive and should L be less than u the A value would
be IL - ul/o.

The B value used will, in most cases, correspond directly
to the B values used in the analysis since empirically B8
values are calculated or estimated using serial correlations
of lag 1, lag 2, etc. which are indevendent of the interval
between successive time points. Sht¢ 1 a g value be calcu-
lated using the actual time intervals it will be necessary
for the user to modify the g wvalue prior to utilizing the
program., Recall that the g used in the program assumed "time"
units of length 1. If a B value has been calculated using
intervals of, say, .5, i.e., T = .5, 1.0, 1.5, etc. the auto-
correlation function will be R(t) = exp(-8|t|), Tt = .5, 1.0,...
and this corresponds directly to R(t”) = exp(-.58|1"|),

77 -1,2, ...+ 1In this case the.value .58 would be the
value the user supplies to the program.

In general we can summarize this procedure as follows:
Assume the autocorrelation parameter R“ has been calculated
using equally spaced intervals t“ = h, 2h, 3h, ..., giving
R(t”) = exp(-g“|t“|). This corresponds directly to
R(t) = exp(-g“h|t|), 1 = 1, 2, ... which means g (for

program input) = g-“h.
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The program output will consist of:

l) L, u, 0, B and calculated A value,

2) Predicted mean and variance for the number of
crossings and the model selected based on these
values and

3) Predicted probabilities for 0, 1, 2, ...,

n (or more), n < 40, overshoots.

As an exalple consider the situation below. For the
month of January at 12 km the scalar wind speed at Cape
Kennedy has the following properties:

1) R(t”) = exp(-B“t~°), 17 = 12, 24, 36, ...

with g~ = ,0247%,

2) o = 8 m/sec and

3) uy =24 m/s.

We desire to predict the probabilities of 0, 1, 2, 3, 4 and
5 (or more) overshoots above the level L = 39 m/s.

The R value for the program is not .0247 but rather
is 12 » .0247 = ,2964. This makes R(t”) = exp(-.0247t"),
t* =12, 24, 36, ... equal to R(t) = exp(-.29647),
t=1, 2, 3, ..+ The program input is L = 39, u = 24,

c =8, = .2964 N=5 and M = 62. The program calculates
the standardized crossing level A as 1.875 and utilizes
these A and B values to calculate the predicted probabili-
ties. Table 5 gives the resultant computer output.

The formats for program input parameters are given in

Appendix I,
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This algorithm was, of course, developed under the
assumption that the process was stationary normal with an
exponential autocorrelation function. This process is the
most widely applied and, despite the intractability of the
mathematics, in the only such continuous stochastic process
that can be analyzed to any appreciable extent. The question
of the degree of applicability to suspected or confirmed non-
normal processes will certainly arise and while there appears
to be no answers in the literature there are somz statistical
results of a general nature that have some bearing.

Most skewed distributions, e.g., lognormal or gamma are,
for certain ranges of parameter values, almost normal and
certainly the algorithm is useful in these cases. As an
example of this term "almost" normal consider a gamma distri-
bution with parameters o = 2f and B8 = 1/2 where

a xa-le-Bx

I'(a)
rapidly apprcaches normality. With these values of o and B8

£f(x) = . As f increases this distribution
this is the x? pdf and it is common statistical practice
to use a normal approximation to determine critical values
when the degrees of freedom (denoted by £f) is large.

The equations to estimate the process mean and variance
do not utilize the properties of any distribution. The
assumptions of stationarity and exponential-like autocorrela-
tion function are certainly required whether tie distribution
is or is not highly skewed. The Central Limit Theorem (CLT)
permits ons to dete:rmine the average number of points above

a certain level in this process just as if it were normal
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(the CLT is certainly applicable with sample sizes of 250) and
an extension to the average number of overshoots is reasonable.
In skewed distributions the mean and variance are not inde-
pendent - this possibly makes our independent equations for
estimating the process mean and variance a bit tenuous. The
relationship would certainly be difficult to determine but

the proper procedure would likely be to incorporate the esti-
mated mean (which should be adequate if the assumptions are
satisfied) into the estimating equation for the variance. The
three discrete distributions, i.e., binomial, negative binomial
and Poisson, are applicable in any case.

One additional result is the fact that overshoots fre-
quencies approach the Poisson distribution as the crossing
level increases regardless of the process distribution. This
"cutoff" value was approximately two standard deviations above
the mean in our study and would likely be close to the "cutoff"

value for most distributions.
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APPENDIX I

PREDICTION PROGRAM LISTING AND

INPUT FORMATS
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PRO,RAM 10,
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AUTHON .

MWINE MALISON,

DATE ARITTEN,
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PURPO)‘Q

CALCULATE FRLGUENCY DISTHIBLTION FUR OVERSHOOTS 1IN
A STATIONARY GASUSSIAN STOCHASTIC PROCESS wlTy

EXAPONENTJAL AUTOCONKELATION FUNCTION,

SUBROUTINES REGUIRED.
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REAL MEANILEVEL, P}
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RDRa}
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READ (RDR2IO0CIEND®700) MEANSSTUEVIBETAILEVELINUNIRATIO
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D v <BETA

APRY S(LEVEL - nEAN) /7 STOEV
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ALOGD ® ALOG (BLTA)

COMPUTE E3T OF DIS:XIBVUTION MEzN
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(BETA o6T¢ 1.5) GO TO 250

(BETA +6Ts +01) 6O TO 200
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o (ALOGE ¢ 7.,81708) / (~i0.2928)
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n 1e57486002 = 4,06,210510(=pe82) = ALOGS)

e 1031154002 o 4,0010,2)6870(=]),0%82 - ALOGY)
® 303020082007 = R,0016,36540(=2:9)42 = ALOED)
o (21,87684 » SQRTIDI)) /7 43702

F2 ® («10e3110% ¢ SQRTID2Z)) / 20,4734
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- STATELMENT

F)] = 3¢3U5 ¢ eUl4ed

F2 = =¢]lb9 = «0lubep

FI3 m =e47 + o02eb

TEMP = F| + F2ea + FleAss
LMEAln = EXP (TEMP)
EMEANSEMLANCRATIO/ZIUD.

CoMpuTe ST OF DISTRIBUTIUN VAK]ANCE

IF (A oGte 140) 6O TO 2350
Gl = =6432749
02 = =e3902259
Gl = +16156
60 TO 400
Gl = =7.U012996 + +387066%aA
32 % 4219193 = 4175855204
G 1 =6,137068 ¢ 14.81297¢A = | 146329504002 ¢ I Y496)0°a0e)
DISC 8 wlee?l =4,ueGl0la]l = alQuu)
EVAR BleG2 + SQRT(DISCY) / (2003)
EVARSEVARO(RKATIO/ 10U ) 082

DETERMINE APPROPKRIATE MODEL ANU KEASON AND PRT HEADINGS

kLTIN = EMEAN / LVAR

IF (A ¢GTe 2¢0) U TO SOU

IF (95 oLTe RLTN oANDs RLTN oLIe 140US) GO TO SI0
IF (EVAR ,0Te EMEAN) GO TO 520
MEAN 2 VAR => BINOM]IAL

MODEL s |

PP = | « EVAR 7/ EMEAN

XTEMP 8 ¢MEANeo2/ (EMEAN-EVAK)
XTEMP = XTEMP ¢ .5

ITEMP = XTEMP

IF (ITEMP oLTs (NUMe])}) GO TO 490
PX s ITEMP

00 TO 495

PX = NUM - |

CONTINVE

GO0 10 S5%u

A > 240 *> POJSSON

MODEL =

60 10 550U

MEAN ® VAR «> PQlS5SON

MODEL = 3

GO TO0 550

VAR > MEAN => NEG BINOMIAL
MODEL = 4

PK s EMEAN®®2 / {(EVAR ~ EMEAN)
PP = PR / (PK + EMEAN)

WRITE (PRNTR2»JOIOILEVEL sMEANISTOEVIAPRTIEMEANIEVARIBETA
GO TU (55195521553+554) 1M0DEL
WRITE (PRNTR»1O}1)

GO TC %60

WRITE (PRNTR,1012)
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GO TO0 bHéu
563 WRITE (PRNTR»10}123)
60 70 560
664 WRITE (PRNTRs1014)
5S¢0 WRITL (PrRNIKN,1015)

CALCULATYE AnD PRINT ALL BUT LAST CELL

PSUM = O
NM] s NUM = |
IF (NUM JEwe 1) GO0 TO 60U
DO 90U I=lsNM}
J s | =]
JPl = J ¢+ |
GO 10 (5719572+573s574)H00¢kL
BINOMIAL MODEL
571 PXP) = PX « |
OMPP ® | = PP
ALPR ® DLGGMIPXP1)+JoALOG(PP)+(PX=J)eALUG(OMPP)=DLGGM{JP])
{=DLGGM(PXaJel,)
G0 TO 580
POISSON MODEL
572 CONTINUVE
593 ALPR ® J & ALOG(EMEAN) =~ EMEAN = DLGGM (JP1)
GO T0 580
NEGATIVE BluOMIAL
§74 PKPY & PK ¢+ J
OMPP = | « PP
ALPR ® DLGGM(PKPJ)+PKeALOG(PP)+JoALOG(OMNPP)=DLGGM(PK)=DLGGM(JP])

CALC PROBABILITY AND PRT CELL
560 PROB ® EXP (ALPR)
PSUM & PSUM + PROB
590 WRITE (PRNTR1020)J+PROB
COMPUTE LAST CELL

600 PROB = | « PSUM
WRITE (PRNTR, 1020)NM1,PROB

G0 10 100
END OF JoB
‘00 STOP

GO0 0000000000000000000088 F U R M A T S 00000800000 08000080%00000%0900

1000 FORMAT(4F10434215)
1010 FORMAT (910 ) 'LEVELY sF 1 oY oBXs"MEAN? yF11oe%y10Rs"STOs DEVIATION®
1F11a47% ADJUSTED LEVEL*oF11e%0d0o%01STe MEAN' sF || o4,458X,
2'01STe VAR 4F) 144/ AUTOCORRELATION PARAMETER *sFlle8/)
1011 FORWAT ¢ MEAN EXCEEDES VARIANCEs BINOMJAL MODEL SELECTED®)
1012 FORMAT (* LEVEL ABOVE 2,0, POISSON MODEL SELECYED®)
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1013 FORMAT (v MEAN APPROX = VARIANCLs PUISS04 MUODEL SELECTED®)
1014 FORMAT (* VARJANCE LACEEDES MCAwny NEGAILIVE S8INOMIAL MULEL SELECT?',
{'ED)
1015 FORMAT (/6Xy*NUMBER OF CRUSSINuS PREDICTED PROUABILITY®)
1020 FORMAT (' *910Xs16021X4F744)
END
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DY=pX

ODTELRM=],

IF(DA) L4022
vLegMsy,

RETURN
IF(DY=18e)3,344
DTERMSUTERMeDY
DYspYel,

60 10 2

DLOGME DYoL 0ALOGILY)aDY ¢ 1o/ (120007 )m] o/ (360s0DYO@3)*] 4/ (126000
1070051'1./(1630.007007)0.91893654320*673~AL06(0TENM)

RETURN
END
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COMMENTS ON THE THFORETICAL APPROACH

Two interesting problems in the theory of stochastic
processes are first to find the probability density of the
duration of a crossing of a given level by a random process
X(t) and second to find the probability density of the
number of crossings of a level by the process. The problem
of obtaining the average number of crossinas of a level has
received much attention in the literature. 1In fact, if
X(t) 1is a stationary gaussian process, the complete sclu-
tion has been given bv Ito (1964) and Ylvisaker (1965). For
non-stationary gaussian processes, Leadbetter and Cryer (1965)
have given a similar result. And finally, Leadbetter (1966)
has considered the average number of crossings for a wide
class of non-gaussian processes. However, solutions in
closed form for the original two problems have not been ob-
tained even in the more desirable case when X(t) is gaussian.
Several approximations to these probabilities have been ob-
tained and we shall give some with references.

Let X(t) be a random process with correlation function
R(t). Following Rice (1945), the probability density function
of the interval between the ith and the (i + m + 1l)th cross-
ing of a level A by X(t) is denoted by Pm(T); and the
probability of exactly n crossings of the level A in the
interval (t, t + 1) 4is denoted hy p(n,T). For a basic re-
lationship between Pm(r) and p(n,T) see Appendix I of

McFadden (1958). Let fO = X(to) = A, fi = X(ti), g; = ¢ (ti)
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for i =0,1, ..., n and dk(tl, ey tk) =

w 0 0
da .o .ee eeeA; .o cee
(UN(A))[0 gof_w J_m!gogl gklwk+l(ﬁ. .\ 94" qk)dgl dgk

where N(A) = J g Wl(A;g)dg is the expected number of cross-
0

ings of the level A by X(t) in the interval (t, t + 1)

and Wk+l(f0,...,fk;q0,...,gk) is the joint probability

density of fO""’fk and Igree-r9 Then according to

K
Kuznetsov and Stratonovich (1956)

p(n,1) = 1/n! L

k T T
(-1) /k![ ...[ d (t.,...t_ . )dt._...dt (1)
k=0 n

0 o ntk 1 n+k’ 71 +k’
And by Kuznetsov, Stratonovich and Tikhonov (1954) the

probability density for the duration 1 is

p(1) = %p(o,r). (2)

It is apparent that the desired probakilities (1) and
(2) are very complicated and consequently only appfoximations
have been given. To illustrate this point let us consider
the case where X(t) is gaussian with correlation function
R(t). It is known that the normal property is retained for
any linear transformation of a normal random function. Con-
sequently, the joint probability density for the values of

the random function and its derivatives will also be normal.

Thus wk+l(fo'...'fk;go’...'gk)

2k+1

k+l,1/2
A ) expl-1/2 ¢ L,.f,f.]
T g 1T

= (1/(2m)
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where fk+i =9, i=1,...,k+1, A = l(rij)l, Lij = (rij) ’
R ¢ & O R R’ [ ] R’
00 0k 00 ok \

1 : : : : '

(r ) = Rko Rk fro ot Pk
ij ” - -D”*” _Dn””

" “Roo Rox  ~Roo Rox

|

\ . . . -

- S L e Y

ko kk k0 Rk 2k+2, 2k+2
and R., = R(t.-t.)o

ij i 73
Thus we have Wk+l(A,...,A;g0,...,gk)
k k
k+1l,1/2 2
= (1/(20m) A ) exp[-1/2( & AL, .+ L . .9.9.)]
i,3=0 ij i,3=0 k+1+i,k+1+371i°]
k k
. k+1.1/2 2
= (1/(21) A ) exp[-A /2 © L,.] exp[-1l/2 ¢ L . .9.9.1.
/ p i,5=0 i3 P i,4=0 k+l+l,k+1+jglgj

Now let us denote by p(go,...,gklfo,...,fk) the con-
ditional probabilitv density of (go,...,gk) given (fo,...,fk)
and let p(fo,...,fk) be the probability density of

(fO"'.'fk) then

k
exp(-1/2 I M,.f f))

k+1/2 1/2
D™ )
i,3=0 *3 13

Plfgre--,E) = (1/(2M)

where (M. . ) 1is the inverse of (Rij) and

ij
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The last summation of (3) involves only the last k+l rows

and columns of (Li_). Denote the inverse of this matrix
]
by (mij); that is,

-1
‘Dpr1 kel ot Prel, kel ‘\
m,.) = 5 : : ‘
Mig) = | :
.\L L /
U2Kk+1, k4L ... 2k+1,2k+1

It is clear that (m ) is the covariance matrix of
1)

(go,...,gk) given that f0 = fl = ... = fk = 0 and by

Jacobi's Theorem the (i,j)th element of this matrix is the
bordered determinant

R oo R R”

00 0k 03

m. =| . . : : D,

1]
R R R”
X0 Kk kj
-R; =R, =RI7
RlO ik le
The determinant of (mij) is given by l(mij)l = A/D. So

now we have p(go,...,gklo,...,O)

k+1 1/2 k
_eme A exP[-1/21l§=0Lk+l+i,k+l+jgigj]
(1/(2n)k+1/2n1/2)
k+1/2 1/2 k
= (1/(20) I(mij)| ) exp[-1/Zi'§=0Lk+1+i'k+l+jgigj]
= z(ar a)-
49




Thus W (A,...,A:go....,qk)

k+l
k k
k+1 1/2 2
= (1/(21m) exp[-A /2 z L .] ex [-1/2 z L
k+1/2 1/2 2 k N
= (1/(21m) D ) exp[-A /2 b3 Li.] . 2(g, m).
»3=0

TherEfore, dk (tl'.oc’tk)

k+1/2 1/2

k % 0 0
= (1/N(A) (211) ) expl[=-A /2 g_oLij].[ dgoI_w...J [90...gk|

0 Ldd

[ . |
.2 (g, m)dgl...dg

.
Let -mij/(miimjj)l/z i#cC
n,, =
’ mij/(miimjj)l/z i=0
and hi = CJ:i_/(r!\:.'.i)l/2 then dk(tl,...,tk)
= mgy..om 0 2/ 2o 2pt2) expl-n®/2 1 L]
i,3=0

.I“...[:ho...th(ﬁ, n)dh,...dh

0
where Z(ﬁ, 3) is the ordinary normal probability density
function in k+l1 variables hn""'hk with covariance matrix
(nij)'
In an attempt to find p(r) when X(t) is gaussian and
R(t) = exp(-at?), Tikhonov (1956) has approximated p(0,t)
in (1) bv nealecting all terms of the series greater than 2.

He claims that his results oive satisfactory agreement with
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the experimental results of Rice (1953). It is clear that the
smaller T 1is, the hetter the approximation. However, if
is very large or if we wish to find p(n,tr) for large n we
must find some other means of approximation.

Longuet-Higgins (1962) has obtained an infinite series
for p(n,t) and Pm(r) similar to (1) where each term is
an integral of the joint probability W(+, -, -, ..., -)dtl...dtn
that X(t) has an up-crossing in the infinitesimal interval

(ty, ty + dtl) and a down-crossing in the remaining (n-1)

1
intervals (ti, ti + dti) (i=2,3, ..., n). He -~lso gives
a genecal relation between P_ (1), p(n,r) and W(S) where
S is a series of plus and minus signs (plus if X(t) has
an up-crossing and minus if X(t) has a down-crossing).
Using “he infinite series he obtains the asymptotic behavior
of P (r) and p(n,7) for small 1.

Based on their experimental results, Faureau, Low and
Pfeffer (1956) hypothesised the distribution of PO(T) for
a gaussian process X(t) whose spectrum is (1 + o’)-2 to
be negative exponential. However, using his asymptotic ex-
pression Longuet-Higgins (1962) was able to disprove this
conjecture.

Other experimental and analytical approximations of the
desired probabilities have bheen given but almost all are

asymptotic approximations for small 1 or approximations as

the level A approaches «, Although, we cannot obtain the

‘exact probabilities p(n,tr) and p(t), we desire approxima-

tions which are valid for intermediate level Tt and n > 1,
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APPENDIX III

COMPARISON OF SAMPLE DISTRIBUTIONS
TO PREDICTED DISTRIBUTIONS

d




: A LEVEL Q.75 AUTOCORRELATION PARAMETER B 0001000
i
: CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF 1 SAMPLE 1 PREDICTED 1 PROBABILITY | MINUS 1
OVERSHOOTS I FREQUENCY 1 FREQUENCY I (Xs]) § PREDICTED | COMMENTS
T e e . <= -
0 1 97.0 1 7367 1 002948 i 23027 |
b S 13660 1 13346 1 0¢2399 1 2030 H
2 ! 16340 1 175.5 1 0ele75 1 =124¢59 1
3 1 187.0 1 203,2 { 0el106 1 =16425 H
[N 1 21240 ! 22049 H 040709 1 «8,498 1
) 1 22640 I 2321 ] 00846 i =6elbh 4
A 1 237.0 I 23949 1 0¢0277 1 =2+08 1
) ¢ 24240 1 26303 1 0¢0471 4 =1036 I
8 1 264940 1 26549 1 040104 i 3,02 i
9 4 25000 1 264949 1 040169 1 0600 1

THE NEGATIVE SINOMIAL MODEL WAS SELECTED.

ESTIVATED MEAN
SAMPLE MEAN

1,9531
20040

ESTIMATED VARIJANCE 4.6889
SAMPLE VARIANCE 541365




CUMMULATIVE CUMMULATIVE PREDICTED

OVERSHOOTS 1 FREQUENCY I FREQUENCY I (X=1])

NUMBER OF 1 SAMPLE I PREDICTED I PROBABILITY I
I PREDICTED

A LFVEL 1450 AUTOCORRELATION PARAMETER B 0401000

SAMPLE
MINUS

COMMENTS

~eeemmm——— pmm————mmmey ———
¢ 1 18240 1 18246 ) 07306
1 I 21040 1 21245 I 0el1199
2 1 23040 1 22646 I 00560
3 1 236,40 1 23446 1 040319
4 1 20060 1 23945 1 040197
5 1 24240 1 24247 1 00128
- 6 1 26349 1 24449 14 040085
: . 7 I 24740 1 24644 I 00058
: 8 I 24760 I 24764 1 040040
k 9 { 25040 i 25049 [ 040102

THE NEGATIVE SINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 047169
SAMPLE MEAN 046920
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I
1
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I
l
I
[
{
1
I

=0e65
=2eHb
3433
leé36
0442
«0e78
=193
0e59
Iy
0400

ESTIMATED VARIANCE 341306
SAMPLE VARIANCE 245352

Gt Pt Pt Dmt Gmt Pt Gnd Deq Dug St o Owe O
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A LFVEL 2.00

AUTOCORRELATION PARAMETER B 0,01000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF | SAMPLE I PREDICTED I PROBABILITY I MINUS 1
OVERSHOOTS I FREQUENCY I FREQUENCY I (X=1) 1 PREDICTED 1 COMMENTS
+ + + * “—y
0 1 22140 1 2164 I 08656 | 4e57 {
1 1 231,40 I 23346 1 040689 1 2465 1
2 1 23640 I 24048 I 0e0281 1 =4469 1
3 1 24140 I 24443 1 00145 I =3,33 1
' 1 243,0 1 26604 1 040083 1 =3¢4] {
5 I 24840 1 24748 1 040050 1 0«31 I
6 4 2490 1 24844 1 0e0031 1 0e52 1
7 1 25040 I 24949 1 040061 I 0400 I
THE NEGATIVE SINOMIAL MODEL WAS SELECTEDe
ESTIMATED MEAN 063024 ESTIMATED VARIANCE 11484
SAMPLE MEAN 043240 SAMPLE VARIANCE 11,1676
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A LEVEL 2450 AUTOCORRELATION PARAMETER B 0401000

CUMMULATIVE CUMMULATIVE  PREDICTED SAMPLE 1

NUMBER OF | SAMPLE I PREDICTED ! PROBABILITY I MINUS I ;

OVERSMOOTS [ FREQUENCY I FREQUENCY [  (X=1) 1 PREDICTED I  COMMENTS

+ + + + +

0 I 24140 1 22461 I 008966 I 16484 1 g

1 I 24340 1 24846 1 060978 I =562 I ;

2 I 24600 1 249e¢9 1 060053 1 =395 1 :

3 1 24660 I 25060 I  0er001 I =4e00 i :

“ I 24840 1 250e0 1 060000 1 =200 I Z

5 1 24840 I 25040 I 000000 I =200 1 :

6 I 25060 1 25040 I «0e0000 I  0e00 I 4

THE POISSON MODEL WAS SELECTED. 7
ESTIMATED MEAN 01091 ESTIMATED VARIANCE 045158
SAMPLE MEAN 0e1120 SAMPLE VARIANCE 04613
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A LEVEL 3400 AUTOCORRELATION PARAMETER B8 0401000

_ CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE

; NUMBER OF | SAMPLE I PREDICTED I PROBABILITY I MINUS 1

\ OVERSHOOTS I FREQUENCY ! FREQUENCY 1 (X=]) I PREDICTED I COMMENTS

5 0 I 24840 1 24147 1 0e9668 I 6e27 I

M 1 ! 25040 1 25009 I 060321 [ 0600 I

‘ THE POISSON MOCEL WAS SELECTED.

; ESTIMATED MEAN 040336 ESTIMATED VARIANCE 002894 :
: SAMPLE MEAN 00,0080 SAMPLE VARIANCE 000079 : 2
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A LEVEL 0475

AUTOCORRELATION PARAMETER B 0405000

CUMMULATIVE CUMMULATIVE

PREDICTED

SAMPLE

NUMBER OF | SAMPLE 1 PREDICTED I PROBABILITY I MINUS 1
OVERSHOOTS I FREQUENCY 1 FREQUENCY | {x=]) I PREDICTED 1 COMMENTS

- -4 - +* + *>- +

0 1 1940 1 1048 1 00435 I 8e11 1

1 1 5460 1 3847 I Oesl118 I 15023 I

2 4 8840 1 792 1 001619 1 8e74 I

3 I 12840 I 12340 I 01751 1 4496 I

4 I 16440 I 16242 1 0¢1570 I 1¢70 1

5 1 19740 1 193.1 1 061233 1 3486 I

) I 21740 . 21549 00877 1le92 .

7 I 23160 1 22945 I 040578 I 1e47 I

8 I 24240 1 23864 )| 060357 1 3453 I

9 1 24860 [ 2437 I 00210 I 4e27 1

10 1 25060 1 25040 1 00250 I 0,00 I

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 3,8901
SAMPLE MEAN

3.6480

ESTIMATED VARIANCE 549067
SAMPLE VARIANCE 546266
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; A LEVEL 1450 AUTOCORRELATION PARAMETER B 0405000

CUMMULATIVE CUMMULATIVE PREDICTED

NUMBER OF | SAMPLE I PREDICTED I PROBABILITY 1

OVERSHOOTS I FREQUENCY I FREQUENCY [ (x=1)
e e - -
0 1 9340 1 8442 1 De3368
1 1 14840 ) 14449 ¢ 0e2430
M 2 1 17440 1 18447 I 0el591
: 3 I 20400 I 20949 1 0e1006
i o 1 23040 1 22545 1 0e0625
5 1 235,0 1 23501 )4 040384
6 1 24140 1 24160 I 0e0234
7 1 24540 i 24446 I 0e0142
8 1 24740 1 24547 1 00086
9 I 249,0 I 24840 I 040051
10 1 25060 1 2570 [ 00077

THE NEGATIVE BINOMIAL MODEL WAS SELECTEDe

ESTIMATED MEAN 147514
SAMPLE MEAN 147360

60

SAMPLE
MINUS

I

1 PREDICTED I

- - - — - -

I

l
I
!
I
[
I
)
1
I
I

ESTIMATED VARIANCE
SAMPLE VARIANCE

8679
3003
~10475
-5e92
4043
=0sl17
=0eC4
0e¢39
0e23
0494
0400

442508
440906

>

Gt Bes Bmd Bt Pt Pt D=t 4t Pt Ps

COMMENTS




A LEVEL 2400

NUMBER OF I

1

~NoOOV P VN~ O
Bt ot 59 4 St Dt md

AUTOCORRELATION PARAMETER B 0405000

CUMMULATIVE CUMMULATIVE

SAMPLE

15540
19460
22060
23860
264260
24600
24940
25060

PREDICTED

I ®REDICTED 1 PROBASILITY I
OVERSHOOTS I FREQUENCY 1 FREQUENCY I

1

o =g 0=t P Pt Pt g

14043
19944
22603
23848
24446
24T ot
248,7
264949

I

=4 vl 4 g =0 4 4

(X=1)

05613
0e2366
01074
0e0499
0e0234
0e¢0111
00052
0¢0048

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 0,8206
SAMPLE MEAN 048240

ESTIMATED VARIANCE
SAMPLE VARIANCE

61

I PREDICTED

[

=t =t g >t >t bt

SAMPLE
MINUS

164466
=5e49
=5835
=083
=2469
-1e47

0420

0400

15973
le8323

COMMENTS




A LEVEL 2450 AUTOCORRELATION PARAMETER B 0405000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE

NUMBER OF I SAMPLE 1 PREDICTED 1 PROBABILITY I MINUS 1
OVERSHOOTS I FREQUENCY I FREQUENCY I (X 1) 1 PREDICTED 1  COMMENTS
- A Gk A 5D S A > e o +-------—--—* ----- O S G D s D 2 D O WD . D T L Radad s Lkl bt ol O o G = = .

0 I 21460 1 181.3. 1 067255 I 32461 [

1 1 23840 I 23945 I 0¢2328 1 =1e58 I

2 ! 24740 I 24849 [ 00373 [ =1e92 I

3 ! 24840 ) 24945 I 00039 I =192 I

4 ! 24840 I 2500 I 00003 I ~24C0 l

5 I 264540 I 25040 I 00009 I =1le¢70 [

8 ! 25060 I 25040 ! =04000% [ 04CO [
THE POISSCN MODEL WAS SELECTED.
ESTIMATED MEAN 043208 ESTIMATED VARIANCE 067417

SAMPLE MEAN 042240 SAMPLE VARIANCE 064717
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A LEVEL 3.00

AUTOCORRELATION PARAMETER B 2405000

CUMMULATIVE CUMMULATIVE

NUMBER OF | SAMPLE

PREDICTED

I PREDICTED I PROBABILITY I

OVERSHOOTS 1 FREQUENCY I FREQUENCY I (x=1)
O-------—-—*------- + -—--’——- ------- - e -
) I 24149 l 22501 ) 0e90C6
1 [ 24840 I 24847 I 040942
2 I 25040 [ 25040 I 040050

THE POISSON MODEL WAS SELECTED.

ESTIMATED MEAN 041047
SAMPLE MEAN 040440

B W e e, Smp—sma g o T - =

ESTIMATED VARIANCE
SAMPLE VARIANCE 0.0522
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o - - s - o e .———--w-

SAMPLE

MINUS
I PREDICTED 1!

Oe

De4330

!

[
l
I

COMMENTS




A LEVEL 0475 AUTOCORRELATION PARAMETER 8 0,10000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF 1 SAMPLE 1 PREDICTED [ PROBABILITY I MINUS I
OVERSHOOTS I FREQUENCY [ FREQUENCY 1 {X=1) 1 PREDICTED 1 COMMENTS
- pom———— c————y B S — S Sy
0 1 4e0 I leb 1 00067 1 230 1
1 I 1440 1 9¢5 { 0e¢0313 [ 4ok7 1
2 I 3240 I 2861 ¢ 0e0745 ) 362 I
3 1 6400 I 58¢6 1 0el221 I 5¢30 I
Y 1 9540 I 9762 1 Del543 1 -2429 1
5 1 13760 ! 13744 I 0elé07 { =0e47 I
6 1 17040 I 17343 I 0el433 I =3630 1
7 1 193,0 1 20144 1 0el1125 ) -8 okl 1
8 1 220460 1 22143 1 040794 1 «1430 1
9 I 23740 I 234490 I 00811 I 2491 1
10 1 24540 I 24146 1 040303 1 3632 I
11 I 24840 1 24548 1 040167 1 2612 I
12 I 24940 1 24840 1 040087 I Qe 1
13 1 25040 1 24949 I 0.0077 I Qe00 1

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 544116 ESTIMATED VARIANCE 643429
SAMPLE MEAN 543680 SAMPLE VARIANCE 644584
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A LEVEL 1450

AUTOCORRELATION PARAMETER

CUMMULATIVE CUMMULATIVE

NUMBER OF I SAMPLE
OVERSHOOTS [ FREQUENCY

I PREDICTED I PROBRARILITY

I FREQUENCY I

Chaccacanan po teonen +* -
0 1 58,0 1 4849
1 1 10440 1 1066
2 1 14240 1 15641
3 I 17740 ) 19042
I { 20340 ! 21346
5 1 22640 l 22044
6 I 26240 1 23764
? I 24840 1 24248
8 1 24940 1 260549
9 I 250690 1 25040

0=t Sm¢ S 0=t T4 ¢ v >t 4t e P

PRECICTED

(X=1)

0el14Q3
000936
040592
De0351
0e0214
0e0124
0e0141

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 243430
SAMPLE MEAN 244040

20 0t Pt 2t P4 04 0 OS¢ 4 B0 § ¢ ¥

B 0410000

SAMPLE
MINUS
PREJICTED

ESTIMATED VARIANCE 440488
SAMPLF VARIANCE 443149
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A LEVEL 24,00

AUTOCORRELATION PARAMETER B8 0410000

CUMMULATIVE CUMMULATIVE

PREDICTED

SAMPLE
MINUS

!

I PREDICTED 1

- an dp 4B ap @ an =

I

NUMBER OF 1 SAMPLE 1 PREDICTED | PROBABILITY 1
OVERSHOOTS I FREQUENCY 1 FREQUENCY 1 {X=])
+ + L Stk

0 1 12440 1 1156 1 Qebb2é

1 1 17940 I 18445 I 062755

2 [ 20800 I 2194 f 0el1396

3 ! 23240 I 23640 [ 00665

4 1 264340 1 2637 I 00307

5 1 24940 ! 24762 1 040139

6 1 2%040 1 250490 1 040111

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN
SAMPLE MEAN

le022%
160600

ESTIMATED VARIANCE
SAMPLE VARIANCE

66

l
[
[
I
1
!

COMMENTS

8438
=5¢51
=]1le4l
=bel5
=Q0e74
le77
0600

1e75%47
148799
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A LEVEL 2450 AUTOCORRELATION PARAMETER 3 0,10000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF 1 SAMPLE I PREDICTED 1 OPROBABILITY | MINUS I
OVERSHOOTS | FREQUENCY 1 FREQUENCY | (x=]) I PREDICTED I COMMENTS
-----------*-----------*--------GI--‘------- D DD LDy . G B D D G G D A YT TR G —- — - — - - -
0 ! 1950 ! 17465 I 046982 ! 20044 I
1 i 23760 ! 237e2 I Qe2508 l =Ce2¢ 1
2 I 24640 I 264845 1 0604590 I =2e52 !
3 ! 26940 [ 26949 i 040053 l ~0e87 i
L) ! 25040 ! 26909 l 0«0004 I CeCO !
THE POISSON MODEL WAS SELECTED.
ESTIMATED MEAN 90,3392 ESTIMATED VARIANCE 048196
SAMPLE MEAN 042920 SAMPLE VAPRIANCE 064003
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A LEVEL 3,00 AUTOCORRELATION PARAMETER B3 0410009

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF | SAMPLE I PREDICTED I PROBABILITY I MINUS l
OVERSHOOTS I FREQUENCY | FREQUENCY 1 (X=1) I PREDICTED 1 COMMENTS
el d L DL L Lt - g L Sadadad Lt X DA 2 DL L - - - n
0 I 24240 I 22%.8 I 09033 ! 16015 I
1 ! 24940 I 26847 [ 00917 [ 0e20 [
2 A 25040 ) 26495 ! 0¢0048 1 Ce00 [

THE POISSON MODEL WAS SELECTED,.

ESTIMATED MEAN 04,1016 ESTIMATED VARIANCE 0Qew815%
SAMPLE MEAN 00,0360 SAMPLE VARIANCE 040428
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A LEVEL 0e75 AUTOCORRELATION PARAMETER B 045000C

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF I SAMPLE I PREDICTED I PROBABILITY I MINUS I
OVERSHOOTS | FREQUENCY I FREQUENCY 1 (X=1) I PREDICTED 1 COMMENTS
N B e tm———— —————p e —— e
0 1 040 1 040 1 00000 1 =0400 I
1 1 060 ) 060 I 040000 I =0¢C1 i
2 ! 060 1 0e0 ) 06,0003 I «0e0C9 1
3 1 De0 1 Outs I e0015 I ~0ek8 I
4 ! 060 1 l.8 1 040056 1 =1489 i
5 1 240 1 5.7 1 040155 I =3,77 I
6 I 9.0 1 1443 I 0e0343 1 =54¢35 i
- 7 1 260 )¢ 3040 1 0e0628 1 4407 1
8 1 53.0 1 S4el [ QeD9€9 1 =1,32 i
9 I 770 I B64¢2 1 0e1278 I =Q429 I
10 ) 11140 I 12247 I Delébé I =1ie71 !
11 1 146,0 1 15,8 I 0elu45 I =35 ¢86€ I
12 1 17340 ) 19Ce3 1 0¢1258 I =17431 H
13 1 20240 [ 21444 1 0s0964 1 =12443 I
ls 1 22240 1 23C.7 I 00654 1 -Bs79 i
15 1 23540 1 24046 I Ce0393 ! -5462 I
16 [ 24440 I 26548 1 00021C 1 ~1487 l
17 I 24840 1 264843 1 040099 I =038 i
18 1 24940 1 249 ¢4 1 0¢0042 1 -Qot2 !
19 1 24940 I 26948 I 0+C0O15 I =-0481 1
20 ! 24940 1 26949 1 040005 ! =0 e %4 1
21 I 25040 I 25040 1 0400C2 ! Ce0O0 I
THE BINOMIAL MODEL WAS SELECTED.
ESTIMATED MEAN 104 .697 ESTIMATED VARIANCE 74,2353
SAMPLE MEAN 11,0080 SAMPLE VARIANCE 7,.7830
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[
LY

P

A

NUMBER OF !

LEVEL 1450

PREDICTED

I PREDICTED I PROBABILITY I

+ L Jad -

0 I 340 1 548

l 1 760 4 2542

2 1 3540 I 5947

3 I 8440 1 10249

& 1 12940 i 146,11

5 1 17260 1 18263

é ¢ 205,0 I 209.1

7 1 22940 1 22648

8 1 24140 [ 23746

9 i 264740 I 263,77

10 1 24740 [ 245649
11 4 249,.0 I 268,68
12 1 25000 I 25040

St Ot Bod Ped Pt =4 P=d PO OGSt Pg B0 b-u

(x=1)

P

040064
Qe 0055

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 442630
SAMPLE MEAN 4,6080

70

AUTOCORRELATION PARAMETER B 0450000

CUMMULATIVE CUMMULATIVE
SAMPLE
OVERSHOOTS I FREQUENCY I FREQUENCY !

SAMPLE
MINUS

I PREDICTED

ESTIMATED VARIANCE
SAMPLE VARIANCE

564600
4e2N71

COMMENTS
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A LEVEL 2.00 AUTOCORRELATION PARAMETER B 0450000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE

NUMBER OF I SAMPLE I PREDICTED 1 PROBABILITY I MINUS I
OVERSHOOTS | FREQUENCY 1 FREQUENCY 1 {x=1) [ PREDICTED 1 COMMENTS
e T P - P T P mmem——— o

0 1 5060 1 5940 1 062362 I 9,406 1

1 1 12840 I 13448 1 043030 I =582 I

2 I 18360 1 19145 1 062267 I =8e¢50 1

3 1 22640 I 223.8 1 0el1291 I 2019 1

4 1 24240 1 23943 1 040621 I 2467 1

5 1 26740 I 264549 ! 040265 I 1403 1

& 1 248,0 I 24845 1 040103 I =Je5¢ 1

7 1 24940 I 24945 1 040038 I «0e51 1

8 1 25000 I 25040 I 00019 I =000 1

THE NEGATIVE BINOMIAL MODEL WAS SELECTED,

ESTIMATED MEAN 11,6308 ESTIMATED VARIANCE 240733
SAMPLE MEAN 1,7080 SAMPLE VARIANCE 149505
71



A LEVEL 2.50

AUTOCORRELATION PARAMETER B 0450000

CUMMULATIVE CUMMULATIVE
I PREDICTED I PROBABILITY |
I PREDICTED 1

NUMBER OF | SAMPLE

PREDICTED

OVERSHOOTS I FREQUENCY 1 FREQUENCY I {X=1)
-ar e . L 3 “*»
0 1 15540 1 15549 1 Deb239
1 ! 22640 1 22945 1 0e2943
2 1 24800 1 24649 I 060694
3 1 25040 1 24949 1 Qe0123

THE POISSON MODEL WAS SELECTED.

ESTIMATED MEAN 044717
SAMPLE MEAN 044840

ESTIMATED VARIANCE
SAMPLE VARIANCE
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!
!
I
I

SAMPLE
MINUS

=097
=345¢
107
0400

049764
064756

I

I
I
I
I

COMMENTS




A LEVEL 3,00 AJTOCORRELATION PARAMETER 8 0450000

CUMMULATIVE CUMMULATIVE  PREDICTED SAMPLE
NUMBER OF 1 SAMPLE I PREDICTED I PROBABILITY I MINUS 1
OVERSHOOTS | FREQUENCY 1 FREQUENCY I (X=1) 1 PREDICTED I  COMMENTS
coscacecccap——~ + - S Sl T ———t e cm————— b e ———
0 1 22240 1 225.4 1 0s9019 1  =3440 1
1 1 24840 1 24847 1 060930 I =076 I
2 I 25060 I 24949 I 040049 I 0400 I

THE PCISSON MODEL WAS SELECTED.

ESTIMATED MEAN 041032 ESTIMATED VARIANCE 05785
SAMPLE MEAN 0,1200 SAMPLE VARIANCE 001220
73
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A LEVCL 0475 AUTOCORRELATION PARAMETER B 1400000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE

NUMBER OF I SAMPLE I PREDICTEU I PROBABILITY I MINUS 1
OVERSHOOTS I FREQUENCY 1 FREQUENCY I (X=1) 1 PREDICTED 1 COMMENTS

GBS GRS . an En W ¢, o = e -4 P - - o o= v - -y e A - - - - -
0 H 0.0 1 000 1 040000 I -0000 1
1 1 0.0 1 0.0 1 040000 H =0e¢00 I
2 ! 060 1 040 4 040000 1 «0400 I
3 I 0.0 1 0.0 1 00000 I ~0600 1
b 4 0.0 1 0.0 1 040000 1 =0e02 1
5 4 060 4 Dl f 060004 1 =0e13 1
6 1 160 I Oe5 I 00015 1 Dedb 1
7 )} 240 i 1e7 1 040047 I 0e26 I
[ | 1 5,0 1 be?7 1 040120 1 0e24 I
9 4 13,0 1 1162 1 040259 1 176 1
10 1 2400 I 2342 1 0e0478 1 0e¢79 I
11 1 4140 I 4204 1 00768 I =1e40 I
12 I 7240 1 69,2 1 041075 I 2¢70 1
13 | 10040 1 10262 { Qel220 1 =229 1
14 I 13240 I 137.9 14 Qel425 1 =594 1
18 1 17260 1 17148 1 01357 I Oell 1
16 I 195.0 I 200.3 1 041140 1 =5439 I
17 { 22540 ! 2215 )4 0s0845 1 3e47 I
18 ! 23440 4 235,23 i 0e0552 1 -1¢32 1
19 I 23940 1 26362 1 060217 I -belt i
20 1 24240 1 24762 I 00159 I =5e26 I
21 ! 264940 1 26940 ¢ 060070 1 =0e¢02 1
22 I 25040 1 25040 1 060039 1 «04¢00 1
THE BINOMIAL MODEL WAS SELECTED.
ESTIMATED MEAN 13,9498 ESTIMATED VARIANCE 7.5813
SAMPLE MEAN 1402160 SAMPLE VARIANCE 8343386
74




BRI bt AR Ay iemtn i e

B )

A LE

VEL 150

AUTOCORRELATION PARAMETER

CUMMULATIVE CUMMULATIVE

NUMBER OF 1
OVERSHOOTS I F

SAMPLE
REQUENCY

I FREQUENCY 1

- =

fory
[

o Pes gt o
w N OOV VO WMEWLVN-=O
o P b= Smg D) DG ) D= Pl D) =4 GG Pup Dol

0e0
6e¢0
2140
4640
7340
11840
16940
19940
22400
23840
24440
24840
24949
25040

1e3
840
2564
55e4
9448
13647
17443
20346
22347
23642
24342
24649
24846
24949

Ot St Gt g S =t Ot P Bt Pt Pt =t g =
St St St St Bt bt =t PG ot Pt =g ot ma bt P

PREDICTED
1 PREDICTED 1 PROBABILITY

(X=1)

040053
00270
0e0693
01199
061576
Delé77
2¢1504
0ell70
0«2806
00499
0.0281
De0145
00069
0600583

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN
SAMPLE MEAN

S5¢4084
546600

.—‘.—l-—q-—o.—t-—lb—l.—.”“"‘—.ﬂn’_—'

B 1400000

SAMPLE
MINUS
PREDICTED

ESTIMATED VARIANCE 547737
SAMPLE VARIANCE 561248
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A LEVEL 2,00

AUTOCORRELATION PARAMETER B 1400000

I

- ey o an o on o

1

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF I SAMPLE 1 PREDICTED [ PROBABILITY I MINUS
OVERSHOOTS 1 FREQUENCY I FREQUENCY I (X=]) I PREDICTED I
- S + + +-
0 ){ 33,60 1 3845 1 0el543 I =559
1 1 10340 1 10649 ! 0e2734 1 =3496
2 { 15640 1 1710 1 0e25%61 I =15.00
3 I 20840 I 21361 I 0elé86 I =5e17
4 S 23840 1 23540 I 000875 I 2093
5 4 26400 I 294446 1 060381 I ~0e¢6C
é 1 24940 1 24842 1 0e0145 1 Qe76
7 1 25040 H 24969 I 060070 I 000

THE NEGATIVE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 149724
SAMPLE MEAN 2,0760

ESTIMATED VARIANCE 241960
SAMPLE VARIANCE 261347
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A LEVEL 0475

AUTOCORRELATION PARAMETER B 3,00000

CUMMULATIVE CUMMULATIVE

PREDICTED

I PREDICTED 1 PROBABILITY |
I FREQUENCY I

NUMBER OF I SAMPLE
OVERSHOOTS 1 FREQUENCY
- - -— --’ - .n am
0 1 0e¢0
1 I 0.0
2 1 0e¢0
3 { 0.0
4 1 040
5 1 Qe
6 1 0.0
7 1 060
8 1 040
9 I 0s0
10 1 1.0
11 1 240
12 1 1240
13 1 2340
14 1 3640
15 1 5960
16 1 8240
17 1 111.0
18 I 156,0
19 1 193,0
20 I 20740
21 1 22160
22 e 237,0
23 1 244,40
24 1 24640
25 1 2649.0
28 1 2%0.0

+ -

LY
1¢3
3¢5
el
1549
3140
%342
8le?
11449
14944
181l.2
20742
22640
23849
24446
24749
249.3
25040

P P Om) D) D=t Dt P = PG 0= P 0h Puf Pl Gl O=b Gb Png PO D=t d PG D=t 0@ O=d >4 P=b

THE BINOMIAL MODEL WAS SELECTED.

ESTIMATED MEAN 1745446
SAMPLE MEAN 17,6720

-

P Pl Pul P Pt b P P O f S=d Pl Pt Pt P af $=d G Pod D@ OG Omd Pt DuC Pub O=¢ OO

(X=1)

040000
040000
00000
040000
040000
00000
0¢0000
040001
040003
0e0012
040035
00087
0s0186
Ce0351
0e0586
00866
0e1138
0el1329
0e1379
Nel271
041039
040751
DeQ478
060267
040129
040054
040027

[

+

St Gl DG Ot Gt Pl Dot P D= Db P Pt B ® Db Pt Ot Pt Pd St D=t Pt 0=t Pt =4 >0 b &0

SAMPLE

MINUS
PREDICTED

ESTIMATED VARIANCE 8,094l
SAMPLE VARIANCE 847835
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A LEVEL 1450 AUTOCORRELATION PARAMETER B 3.00000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE

NUMBER OF I SAMPLE I PREDICTED 1 PROBABILITY I MINUS I
OVERSHOOTS I FREQUENCY 1 FREQUENCY I (X=]) 1 PREDICTED 1 COMMENTS
- et T + ————— e pmmmmc—————— tm—— -

0 1 040 1 043 1 060015 1 =0e¢37 I

1 [ 10 1 208 i 040098 I =1484 1

2 1 60 { 1048 I 0¢0319 ! -4Le83 I

3 1 2400 1 281 1 Ce0691 i =bel? i

b 1 4940 1 5602 I Oell22 I =7420 I

5 1 87.0 1 9246 1 0elds57 I =567 1

6 1 14060 1 13240 I 0el576 1 TeS6 1

7 ! 17500 1 16845 I Oelabl 4 6e43 1

8 I 20940 1 198,1 ! 0e1'85 1 10480 I

9 1 23240 1 21945 1 040854 I 12443 I

10 1 24140 1 23344 ! Oet'554 ! Te5¢ 1

11 ! 24740 1 24146 1 Qe0327 1 5438 1

12 ! 24840 1 24540 1 Ce0177 1 1495 1

13 I 264940 { 24842 I 0.0088 I 0e74 1

14 1 250,60 I 2%040 1 00069 1 0,00 1

THE POISSON MODEL WAS SELECTED.

ESTIMATED MEAN 604899 ESTIMATED VARIANCE 642380
SAMPLE MEAN 643680 SAMPLE VARIANCE 447877
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A LEVEL 2400

AUTOCORRELATION PARAMETER B 3400000

CUMMULATIVE CUMMULATIVE

NUMBER OF I SAMPLE

PREDICTED

1 PREDICTED I PROBABILITY 1|
OVERSHOOTS 1 FREQUENCY I FREQUENCY |

oo
23.0
7960

13740

19360

23060

24240

2490

25060

~NoOVMEWN~O
- ¢ =0 =0 +=o o=s &0 *o

-t
!

I
I
!
!
1
1
I

THE POISSON MODEL WAS SELECTED

ESTIMATED MEAN 2,4012
SAMPLE MEAN 2,3880

+

S Sup Sug P O=q =g b 0O

- Sp D as e e an Gy = an o> =

(X=1)

040906
02175
Ce2612
042090
0el255
060602
0e0241
00116

!

+

SAMPLE
MINUS
PREDICTED

ESTIMAYED VARIANCE 243773
SAMPLE VARIANCE 242464
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A LEVEL 2.50

CUMMULATIVE CUMMULATIVE

PREDICTED

AUTOCORRELATION PARAMETER B8 3,00000

SAMPLE

I PREDICTED ! COMMENTS

L T T Y et e L L L T Y.

1 17455 1
13.35%

NUMBER OF | SAMPLE I RREDICTED I PROBABILITY I MINUS I
OVERSHOOTS I FREQUENCY I FREQUENCY 1 (Xx=1)
L4 * *+ -
0 i 14440 { 12644 I 05057
1 1 22640 ! 21246 { Cedba?
2 1 24640 1 24240 1 Qell75
3 I 25040 I 24949 I 040319

THE POISSON MODEL WAS SELECTED,

ESTIMATED MEAN 0.6816
SAMPLE MEAN 00,5360

I I
[ 3498 I
l 0400 I

ESTIMATED VARIANCE 141250

SAMPLE VARIANCE 045067
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A LEVEL 3,00 AUTOCORRELATION PARAM_TER B 3.,00000

CUMMULATIVE CUMMULATIVE PREDICTED SAMPLE
NUMBER OF | SAMPLE 1 PREDICTED 1 PROBABILITY | MINUS 1
OVERSHOOTS | FREQUENCY ! FREQUENCY 1 (X=]) 1 PREDICTED I COMMENTS
+ ———— R D e
0 1 23640 1 21545 1 08620 1 20448 1
1 i 25060 4 25060 I Qel1379 I 000 1

THE POISSON MODEL WAS SELECTED.

ESTIMATED MEAN 0Qsl484 ESTIMATED VARIANCE 046699
SAMPLE MEAN 040560 SAMPLE VARIANCE 000530
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